GALILEO Project

MONITOR WORKSTATION SYSTEM
Architecture Design Document
Tecnical report n. 1

A, Balestra, P. Marcucci, M. Pucillo, C. Vuerli

October 1990

Pubbl. Osservatorio Astronomico di Trieste n, 1341

oy

o

Overview

This is a preliminary version of the Architectural Design Document (ADD) for the monitor
software of the TNG Control System (TCS) to be built inside the Monitor Workstation (MWS).

The software described in the following refers to a first, simplified, system needed to qualify
the primary mirror subsystem. It will be taken as a prototype for the further development of the
complete system.

There shall be two environments on the MWS, one off-line dedicated to the housekeeping
of Characteristics files, and one on-line wich shall communicate with the user and the TCS
subsections, monitoring all the telescope activities.

Files and Tables
The structure of the MWS file system shall be as follows :
/tng/data/config contains system configuration files
/tng/data/def contains editable characteristics files PCF, CCF, DCF, ... in the

format required by off-line editor

/tng/data/compiled contains the characteristics files in compiled format, as
required by programs in the VMEs and in the MWS. File
names will be in the format xxxnnn.cmp, where xxx is the
editable file name and yyy is the number of the node to
which the file will be downloaded.

/tng/datafoffline contains all the files needed by off-line utilities, e.g. masks,

definitions, ...
/tngfexec contains executable files
/ing/sources contains source files
/mg/lib contains libraries
ftng/lib/sources contains libraries sources
/tng/help contains on-line help files

Files structure

Configuration Files

A description of the structure and internal organization of configuration files follows.

/* === DCF {(Display characteristic file) ==== */

struct dcftype

{

int

int

int

int

int

int

char

}i
typedef struct

dcfnum;
nodenum;
wind;
xoffs,yoffs;
xdim, ydim;
color;
title{81}:

dcftype dcfrec;

/* unique identifier of the window */
/* (see /tng/data/config/ncf) */

/* window # (node relative) */

/* window offsets */

/* window dimensions */

/* window color */

/* window title */

/* === NCF {(Nodes characteristic file) ==== */

struct ncftype

{

int

char

char

int

int

}:
typedef struct

nodenum;
nodename [81] ;
arpa node[16];
byte sex;

send data;

ncftype ncfrec;

Characteristic Files

/* unique identifier of the node */

/* node description */

/* ex: 125,000.000.002 */

/* YES=swap bytes, NO=as is */

/* YES=send TmiData, NO=send only Tm */

A description of the structure and internal organization of characteristic files follows.

/* ==== PCF (Parameter characteristic file) ==== ¥/

struct pcftype

{

int

char

char

char

char

char

char

}:

key:

operator 1d(31]:
creation date[7];
update date(7]:;
title([66];
comments[2] [66];
ccf[21];

typedef struct pcftype pcfrec;

/* unique identifier of VME */
/* name of the operator */

/* aammgg */

/* aammgg */

/* title of the file */

/* two lines of comments */

/* related CCF file */

/* ==== DCM (Descriptor characteristic file) ==== #*/

struct dcmtype

{

int
int
char
int
int
int
int
int
int
int
double
double
double
double

key:

validity;
acronym[21];
upcom_vme;
size;

ring buffer;
convert;
intr low limit;
intr high limit;
check_limits;
low_alarm thr;
high_alarm thr;
low_attn_thr;
high attn thz;

/* DCM identifier (master descr.} */
/* VALID / UNVALID record */

/* descriptor acronym */

/* VME id (see /tng/data/config/ncf)*/
/* data size */

/* ring buffer to be used */

/* YES/NO convert to physical units */
/* lower input limit in eng. units */
/* higher input limit in eng. units #*/
/* YES/NO check input limits */

/* low threshold for ALARM */

/* high threshold for ALARM */

/* low threshold for ATTENTION */

/* high threshold for ATTENTION */

-3

5

9

int wind id: /* output window id (see /tng/data/config/dcf)*/

int % _wind pos; /* internal x position inside window */
int y_wind _pos; /* internal y position inside window */
char phy_unit[11]: /* acronym for phys. units to display */
char dispform(2]; /* display format (s,f,n...see xmask} */

double coeff [MAXCOEFF) /* IPM polynomial coefficents */
}:
typedef struct demtype demrec;

/* ==== CCF (Command characteristic file) ==== */
struct ccftype
{

int key; /* unique identifier of VME */
char operator_id[31]; /* name of the operator */
char creation date[7];/* aammgg */

char update date[7]; /* aammgg */

char title[66]; /* title of the file */

char comments[2][66]; /* two lines of comments */
char pcf[21]; /* related PCF file */

}:
typedef struct ccftype ccfrec;

/* ==== MCM (Microcommands) ==== */
struct optype
{

int convert; /* YES/NO convert in eng. units */
int min_value; /* minimum value allowed */
int max_value; /* maximum value allowed */

double coeff [MAXCOEFF]; /* IPM matrix */
}:
typedef struct cptype oprec;

struct mcomtype
{

int key; /* unique command identifier */

char acronym({21]; /* command acronym */

int queue; /* DELAYED/NODELAYED */

int counter; /* max number of operands */

int min_exec_time; /* min., time extimated for execution */
int max exec time; /* max. time extimated for execution */
int tm; /* Tm par. to verify after maxexectime*/
int tolerance; /* error/1000 allowed in Tm parameter */
int node; /* node (see /tng/data/config/ncf) */
oprec oper [MAXOPER] ; /* operands (see optype) */

bi
typedef struct mcomtype mcmrec;

Help Files

A description of the structure and internal organization of help files follows. (TBW)

Processes

Six main tasks can be foreseen for the MWS, as can be seen from fig. 1. This structure,
which takes into account the characteristics of the UNIX operating system, devotes a single
process to each task, providing also a fast dynamic interprocess communication mechanisms.

Display

INIT
PROCESS (0)

DISPD

ALARMS

FROM

ALARM
PROCESS (3) VMES

COMMANDS
PROCESS (1) vnTn%s
TO DATA
DISPLAY
WINDOW
GENERAL
TELEMETRY
VERIFY
TM QUEUE DATA QUEUE
data flow TELEMETRY
> INPUT FROM
PROCESS (2) VMEs
DATA
DB info
-ﬁ

Fig. 1 : MWS task structure

Processes description

INIT (0)

The INIT process starts at the very beginning of MWS operations. Its task is to load the
internal Data Base with the contents of definitions files, and to create the process structure as
depicted in fig. 1. After all processes are created and inited, INIT puts itself in a sleep state, from
which it will be waked up either by the unexspected death of a child process (due to a non
recoverable error), or by a signal from DISPLAY, passing on a request for an ordinate shutdown
of the system, issued by the operator.

Process creation procedure is implemented using fork and exec system calls. The former
duplicates the process while the latter starts a new image in the same procees. The original
process is then called "parent process", the other is the "child process". If necessary, parameters
can be passed from the parent to the child at the moment of the exec call. The parent process
knows the process id of all the children and this feature will be used for the ordinate shutdown
of the system. The children can also recover the parent process id through a simple sistem call;
this may be useful for sending alarm signals to the sleeping parent on special situations.

System shutdown - TBD

DISPLAY (1)

The task of supervisor of the interactive activities of TCS is taken on by the DISPLAY
process. Itis actually divided into three sections, each carrying on a well defined and independent
activity:

i) monitoring of user input
ii) validating and sending commands to TCS components
iif) displaying of telemetry data

The first two tasks are strictly dependent on the user actions at the MWS console. They
execute in an asynchronous way, with the first one accepting and parsing user input, while the
second validates and transforms it into a meaningful set of TCS commands.

The third task is a synchronous one and is activated by a signal from a periodic clock (e.g.
every second). It takes its input from the general Data Base, and writes the selected data to the
active windows on the MWS screen. The selection of the data to be written and of the windows
where they will go is made following the contents of PCF and DCF tables.

User Interface - TBD
Command Validation and sending - TBD

The display of incoming telemetry data is guided by two tables: DCM and DCF. The first,
using the MSD of the TM data as input key, get the window identifier that is used as input key
to the DCF table. Here are described in detail the identifier of the output window
(nodenum+wind) and the positions of the TM data inside the output window. The windows used
for TM data display can be moved by the user, and the type of TM data displayed can be modified
via the DCM tables.

INPUT (2)

Telemetry data incoming from the TCS components are collected by the INPUT process.
The mechanism adopted to communicate with the TCS is based on the socket structure, as
defined in the BSD interprocess communication system.

The sequence of operations performed by INPUT is as follows:
1) a virtual circuit is opened, to allow TCS components to request a connection;
2) after a request of connection, a permanent circuit is established with the requester

over which data exchange can take place (precedence is given to telemetry connec-
tion);

3) all incoming data are collected in a circular buffer, placed in a shared memory seg-
ment, where VERIFY process can read them.

Step 2 is repeated for each TCS node, so that a set of communications entry points is built
up, each with an associated circular buffer. The whole input operation is structured in such a
way that only two data moves will take place: one from the socket to the circular buffer, and the
other from the buffer to the Data Base, thus minimizing the total overhead.

No data analysis is made by INPUT process. All checks and computation intensive tasks
are left to the VERIFY process.

The same set of operations is performed on the scientific data, but for the reading process
which is the QUICK-LOOK process.

The circular buffer is a structure formed by the following fields:

flag : Specifies whether new items were read on the buffer
buoy : Index of the first not written byte

wrindex : most recent byte written

rdindex : most recent not read byte

block : array of the read/written bytes

Before reading n bytes from the buffer, a reader process does the following tests:

if buoy = 0, read only if wrindex > rdindex
if buoy > 0, read only if buoy > rdindex; if buoy = rdindex then set buoy to 0.

Before writing n bytes into the buffer, a writer process does the following tests:

if buoy = 0, write only if wrindex + n <= dimension of buffer; if not, set buoy to
wrindex

if buoy > 0, write only if wrindex + n < rdindex.

ALARM (3)

Alarm conditions detected by TCS components are sent directly to the ALARM process,
using the same operations as in the case of TM data. The permanent connections with TCS
components are set up during the init phase, after which the process forces itself in a wait state.
The arrival of an alarm message wakes up the process and alarm processing starts with a direct
interaction with the MWS screen.

User interactions with alarms - TBD
Alarms display - TBD

VERIFY (4)

The VERIFY process is devoted to TM verification and storage. It receives its input from
the INPUT process through a set of circular buffers (one for each transmitting node). The TM
data are organized as described in the Tables section, and are processed following the information
contained in the PCF, CCF and DCF tables.

A general Data Base is maintained in the shared memory segment, where all the processed
TM data are written, thus representing the actual status of the TCS system. All other processes
can gather relevant data from there (see fig. 1), again following the information contained in the
definitions tables.

The Data Base is contained in a single shared memory segment; that segment is organized
as a main structure whose elements are arrays of structures. The Data Base segment is created
by the INIT process and all its children processes will receive the identifier of the new segment.
Starting from the segment identifier, the children will extract a pointer to the segment.

If we name ’db’ the pointer to the DB segment, the accesses to the data base will have the
following form:

db -> file_name [k] .field
Example: the instruction
val =db ->dem [235].pvalue

extracts the phisical value of the parameter which tag is 233.

QUICK-LOOK (5)

Scientific data are received through a communication mechanism identical to that of TM
data, are put directly in a file contained in a RAM disk. The task of the QUICK-LOOK process
is to organize the data in a format suitable for storage, and to allow a degree of interaction between
the user and the data themselves. A dedicated window on the MWS screen will be maintained
by the process in order to perform those tasks.

User interface - TBD

Communication Mechanisms

The communication mechanisms are based on the tools that UNIX flavours sysV and
Berkeley place at user’s disposal. Berkeley interprocess communication system is supported by
the concept of "socket"; a socket defines an entry point in a process where a communication
channel can be opened. SysV system is restricted to processes running on a single machine and
uses the system calls inherents the "messages”; such a mechanism allows a message to be sent
from one process to another in a rather easy way.

Internode Communications

The choice of a mechanism for internode communications is forced, by the impossibility to
use sysV tools, towards socket system. At the moment the used sockets are of SOCK_STREAM
type: this guarantees a sequenced, reliable, two-way connection based byte stream. Two
communication domains are provided: UNIX and Internet. The latter has been choosen for its
higher degree of standardization on different types of machines. The supported protocol for these
sockets, in the Internet domain, is TCP. Possible use of SOCK_DGRAM type sockets with UDP
protocol is foreseen to be tested in the near future.

The general structure of communications is implemented with a client-server operating
mode. Once a server receives a connection request, it can react in two ways: forking and
executing a new process dedicated to successive data exchanging or mantaining the control over
transmissions, polling the set of opened sockets using a select system call. The latter solution
avoids scheduling problems and allows more efficient communication management and is now
working.

Interprocess Communications

The interprocess communications are designed in order to work in an asynchronous mode.
This is accomplished using signals and sysV messages together. A process needing to send a
message, writes it in the suitable queue and then signals, through a SIGIO signal, the event to
the receiver processes. After the signal has been delivered to the process, the signal handler
provides the reading of the just written queue. During the execution of the handler, successive
arrivals of SIGIO are blocked until its termination: at this moment only, other readings will be
possible.

General Data Base

TBW
Display Organization

The TCS presents TM data and scientific data through a multi-window display system. This
is a costraint due to the various type of information to which the operator wants to access. In
fact, there will be a window to manage the command input, one or more windows to present TM
data, a window to display scientific data, a window to display alarms and alerts, and some other
windows related to peculiar processes (such as the display of the telescope actual position in a
small pictorial window). Antoher field of developement will be the implementation of a

multi-screen workstation in order to display, for example, TM and alarms on a 800x600x8bits
screen and scientific data on a 1280x1024x24bits screen.

Screen Layout

The layout of the TCS screen is not strictly defined, as the operator can drag and resize most
of the windows across the screen. Keeping this in mind, becomes clear the fact that the windows
have different priorities. An alarm window, for example, cannot be closed or resized by the
operator; the only operations allowed on it will be the moving of the window in another position
of the screen and the “iconization" of the window, that will keep, even as an icon, the color
related to the last active alarm.

Alarm log T%ﬁ sgﬁpe
a

Instrument

TM data

Scientific data
Dialog window

Fig. 2 : Example of an MWS screen layout

Windows Definition

As seen in the "files structure" section, all the data that have to be displayed in a window
provide an handle to a window structure, described in detail by the DCF data structure. In this
data structure can be defined the node address of the display used to contain the window (the
same for all windows in a mono-screen organization), the positions and dimensions of the
window itself, its color and the related title. By using an handle to this structure and the position
informations found in DCM, the DISPLAY process knows exactly where data have to be
displayed.

-10-

User Interaction

The interaction of the user with the telescope and instruments can be accomplished in, at
least, two ways:

» interaction via the dialog window (see fig. 3);
+ interaction via "control panels” (see fig. 4).

The first kind provides input either as a command entered at the keyboard or as a menu
selection, while the second uses a "control panel" metaphora in order to give the user the
sensation of a direct control of the telescope or of an instrument.

Dialog window Dialog
File Commands Help Quit File Commands Quit
>R.A. =11.723 >R.A.=11.723
Context
> DECL = 23.45 > DECL = 23.45 index
> > Last help
Keyboard input Menu selection

Fig. 3 : Keyboard commands vs. menu selection

Control Pane

Fig. 4 : Control panel

-11-

The TM data display is directly related to the interaction flavor choosed. If the operator uses
the "commands+menn” interaction, the TM data are displayed in a separate window (as seen in
fig. 2) and the contents of this window can be user defined. In the other case, "control panel"
interaction, the TM data are displayed in the same window where the operator uses slides, pushes
buttons, etc.. An example of that is shown in fig. 4: here we see the buttons that control M3
position and the actual position (i.e. a TM data) of the mirror, either in a graphical manner (on
the right) or in a textual way (on the left).

Error Management

TBD

Help Management
TBD

Information Logging
TBD

Data Base log
TBD

Telemetry log
TBD

Data log
TBD

-12-

